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Does an exact local exchange potential exist?
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In Kohn–Sham density functional theory, equations for occupied orbital functions of
a model state are derived from the exact ground-state energy functional of Hohenberg and
Kohn. The exchange-correlation potential in these exact Kohn–Sham equations is commonly
assumed to be a local potential function rather than a more general linear operator. This
assumption is tested and shown to fail for the exchange potential in a Hartree–Fock model
for atoms, for which accurate solutions are known.

1. Introduction

Hohenberg and Kohn [4] proved that an external potential function v(r) is
uniquely associated with the electron density function ρ(r) for any N -electron ground
state Ψ. A universal functional F [ρ] is defined by subtracting

∫
vρ from ground-state

energy E[v]. If ρ is arbitrary,
∫
vρ defines a functional V [ρ]. The energy functional

Ev = F + V is minimized by the ground-state density function ρ. In the density-
functional theory (DFT) of Kohn and Sham [6], an N -electron model or reference
state Φ is characterized by a set of orthonormal orbital wave functions {φi}, with oc-
cupation numbers ni. In the Kohn–Sham construction, Φ and a local potential function
are determined by minimizing kinetic energy (Φ|T |Φ) subject to the constraint that
ρΦ =

∑
i niφ

∗
iφi must be equal to the ground-state density function ρΨ. Alternatively,

exact Kohn–Sham equations are defined as the Euler–Lagrange equations for the oc-
cupied orbital functions that minimize the Hohenberg–Kohn energy functional. These
equations contain functional derivatives δE/δρ and take the form{

δE

δρ
− εi

}
φi(r) = 0. (1)

The Thomas–Fermi equation can be derived if the functional derivative of the
kinetic energy functional in exact Kohn–Sham equations is equivalent to a local poten-
tial function vT (r). It has recently been shown that the Thomas–Fermi equation is in
general inconsistent with exact Kohn–Sham equations for the same Hohenberg–Kohn
energy functional [9]. Hence an exact local effective potential does not exist for the ki-
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netic energy functional. It cannot be assumed without proof that the correct variational
expressions corresponding to functional derivatives of other nonlocal components of
the energy functional in equation (1) are equivalent to local potential functions.

Payne [10] showed that unrestricted Hartree–Fock theory (UHF) for ground states
satisfies Hohenberg–Kohn theorems, which establish the existence of an energy func-
tional Ev[ρ] of the reference-state electron density ρ. We use this UHF exact-exchange
model of DFT, for which accurate energies and density functions can be computed, to
examine the question of locality of the exchange potential in exact Kohn–Sham equa-
tions. The UHF energy mean value (Φ|H|Φ) is minimized without constraint other
than normalization, so that Φ is identical to the minimizing state.

Exact Kohn–Sham equations for the occupied orbital functions of Φ are implied
if these orbital functions can be freely varied about their ground-state values. Standard
variational theory requires free variation of trial orbital functions within the relevant
Hilbert space. This is a necessary condition for an integral of the form

∫
δφ∗i {H −

εi}φi = 0 to imply an effective Schrödinger (or Dirac) equation {H− εi}φi = 0. In
the UHF model, E[ρ] is naturally expressed as a sum of component functionals that are
explicit functionals of the occupied orbital functions {φi}. If v-representability fails
for some perturbed density in an infinitesimal neighborhood of a given ground-state
reference density, so that a corresponding perturbed external potential v(r) and UHF
ground state Φ do not exist, variations of an explicit functional E[ρ] are constrained,
and exact Kohn–Sham equations cannot be derived. However, the explicit orbital
functionals of the UHF model and their variations remain well defined. Exact Kohn–
Sham equations and UHF equations follow the same variational logic, using the same
set of trial functions, and must determine the same UHF ground-state wave function
and energy.

The assumption that an exact local exchange potential exists for ground states
leads to several paradoxes in existing DFT literature. A very clear example is provided
by comparing UHF ground-state energies of typical atoms with those computed in the
optimized effective potential (OEP) model [11,13]. For the same N -electron Hamil-
tonian and set of variational trial functions (Φ), the OEP model constructs the best
possible local exchange potential. OEP ground-state energies computed by Aashamar
et al. [1], and with improved accuracy by Engel and Vosko [2], are −14.5724 for Be
and −128.5455 for Ne in Hartree units, above the Hartree–Fock energies −14.57302
for Be and −128.54710 for Ne [3] by amounts greater than the expected residual
numerical inaccuracy. The Kohn–Sham construction also posits a local exchange po-
tential, but adds a constraint requiring the model density to equal the Hartree–Fock
ground-state density. Hence variational theory implies that EKS > EOEP > EHF. When
EOEP > EHF, the OEP calculations imply that EKS > EHF, whereas exact minimiza-
tion of the Hohenberg–Kohn energy functional would imply EKS = EHF. The way
out of this paradox is to insist on a distinction between the “Kohn–Sham construction”
(minimizing kinetic energy subject to a density constraint) and “exact Kohn–Sham
equations” (minimizing the exact Hohenberg–Kohn energy functional), and to drop
the assumption that the functional derivative of the exchange energy functional can be
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equated to the necessarily local exchange potential derived in the Kohn–Sham con-
struction.

In order to examine the question of locality of the effective exchange potential
in exact Kohn–Sham equations, we extend the definition of functional derivatives to
include linear operators that act on orbital wave functions. Thus in general for a
functional F [ρ], derivations given below assume only that the functional derivative
δF/δρ is a linear operator v̂F , which may reduce to a local potential v(r) in any
particular case. We then examine consequences of such locality in the UHF model.
The relationship between v̂x = δEx/δρ and a local exchange potential vx(r) can be
studied in this model without additional assumptions.

We show that certain inconsistencies between existing calculations can be traced
to failure of the conventional assumption that v̂x is equivalent to a local potential
function. We define and evaluate numerical criteria for the locality of functional
derivatives of the ground-state kinetic energy and exchange energy functionals for He,
Be, and Ne. Values of these criteria computed for Be and Ne are inconsistent with the
existence of exact local potentials for either kinetic or exchange energy.

2. Variational theory

To avoid mathematical issues not relevant to the present argument, the local
external potential v(r) and the density function ρ(r) normalized to N electrons are
both assumed here to be spin-indexed scalar fields, realizable for physical systems.
Spin indices and sums are suppressed in the notation. The N -electron Hamiltonian
operator is Hv = T +U + V , where T is kinetic energy, U is the electronic Coulomb
interaction, and V is the N -electron external potential constructed from v(r).

In Kohn–Sham theory, ρ =
∑

i niφ
∗
iφi, where occupation numbers ni are de-

termined by Fermi–Dirac statistics at zero temperature. Thus a density functional is
also a functional of the orbital functions. Density variations are generated by varying
the orthonormal set of occupied orbital functions {φi}. In standard variational the-
ory, as used here, derivation of differential equations requires free variation of trial
orbital functions in the Hilbert space defined by bounded continuous functions with
continuous gradients except for Coulomb cusp conditions. The variational derivations
of Schrödinger and Fock, expressed in terms of functional derivatives of orbital func-
tionals, lead to linear operators acting on wave functions. Functional derivatives that
may be linear operators are related by the chain rule,

δF

δφ∗i
= ni

δF

δρ
φi.

Defining kinetic energy as the mean value in a model or reference state, standard
variational theory for this orbital functional gives

δT

niδφ∗i
= −1

2
∇2φi if ni 6= 0.
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In a ground state, the orbital functional T is a density functional. Hence these for-
mulas imply that the density functional derivative is the operator − 1

2∇2 derived by
Schrödinger. The kinetic energy operator is used in this form in the Kohn–Sham
equations [6]. This functional derivative is not equivalent to a local potential [9].

Exact Kohn–Sham theory provides a model of noninteracting electrons in a po-
tential field defined by the residual functional derivative δ(E − T )/δρ. We show here
that assuming δ(E − T )/δρ to be a local potential leads to contradictions that can be
resolved as in the case of the kinetic energy by extending the definition of functional
derivatives to include linear operators. It is commonly assumed that the functional
derivative of a density functional F can be defined such that an arbitrary infinitesimal
variation of ρ induces

δF =

∫
δF

δρ(r)
δρ(r) d3r.

For any density functional that is an explicit orbital functional,

δF =
∑
i

∫ {
δφ∗i

δF

δφ∗i
+ cc

}
d3r =

∑
i

ni

∫ {
δφ∗i (r)

δF

δρ(r)
φi(r) + cc

}
d3r, (2)

valid if v̂F = δF/δρ is a linear operator. Equation (2) reduces to the usual definition
if a local function exists such that v̂F = vF (r).

3. Hartree–Fock as a density functional theory

In the UHF model, a functional of ρ(r) is defined by restricting trial functions to be
single Slater determinants [10]. This theory is a direct analog of standard DFT [4,6,7].
A universal functional F0[ρ] is defined by minimizing (Φt|T + U |Φt) for given ρ. If
a Lagrange-multiplier field v(r) is specified,

F0v[ρ] = min
Φt

[
(Φt|T + U |Φt) +

∫
v(ρt − ρ) d3r

]
=E0[v] −

∫
vρ d3r, (3)

where E0[v] is the ground-state Hartree–Fock energy in the external potential v. The
electron density ρv is determined by the minimizing state Φv. Equation (3) defines a
universal functional F0[ρ] when v = vρ such that ρv = ρ for Φv = Φρ. The numerical
value of F0 in any Hartree–Fock ground state is specified by this equation.

Hohenberg–Kohn theorems for this model follow from this definition. When
ρv = ρ,

F0[ρ] = F0v[ρ] = E0[v]−
∫
vρ d3r, (4)
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and the energy functional E0v[ρ] = F0[ρ] +
∫
vρ d3r takes its minimum value E0[v].

If F0[ρ] corresponds to Φρ but v 6= vρ, then

E0v[ρ] = (Φρ|T + U + V |Φρ) > E0[v]. (5)

Equations (4) and (5) establish the variational property of the energy functional E0v[ρ].
The Hartree–Fock ground-state energy functional is subdivided into component

orbital functionals E0[ρ] = T [ρ] + U [ρ] + V [ρ]. Each of these functionals is a mean
value evaluated in the reference state Φ = Φρ, expressed in terms of the occupied
orbital functions {φi} of Φ. Introducing occupation numbers ni, and denoting the two-
electron Coulomb interaction by u, Coulomb minus exchange by u, these component
functionals are

T [ρ] = (Φ|T |Φ) =
∑
i

ni

(
i

∣∣∣∣−1
2
∇2

∣∣∣∣i),

V [ρ] = (Φ|V |Φ) =
∑
i

ni(i|v|i),

U [ρ] = (Φ|U |Φ) =
1
2

∑
i,j

ninj(ij|ū|ij).

Here U [ρ] = Eh[ρ] +Ex[ρ], where

Eh[ρ] =
1
2

∑
i,j

ninj(ij|u|ij); Ex[ρ] = −1
2

∑
i,j

ninj(ij|u|ji). (6)

Assuming normalization (Φ|Ψ) = (Φ|Φ) = 1, the correlation energy functional
(Φ|U |Ψ−Φ) defined in reference-state DFT (RDFT) [8] vanishes in the UHF model,
because Ψ = Φ. Euler–Lagrange equations for the occupied orbital functions are
derived below. Because the UHF functional E0v[ρ] is an explicit functional of the
occupied orbital functions, this derivation is valid for both Hartree–Fock and exact
Kohn–Sham equations.

4. One-electron equations and energies

On introducing Lagrange multipliers λji to enforce orthonormality of the orbital
functions, first-order variations of the energy functional are given by

δ

{
E[ρ] −

∑
ij

ninj

(∫
φ∗iφj d3r− δij

)
λji

}
=
∑
i

ni

[∫
δφ∗i

{
δE

niδφ∗i
−
∑
j

njφjλji

}
d3r + cc

]
+
∑
i

δni

∫
φ∗i
δE

δρ
φi d3r. (7)
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Requiring this expression to vanish for unconstrained variations of the occupied orbital
set (ni = 1), with fixed occupation numbers, determines coupled Euler–Lagrange
equations for the occupied orbitals,

δE

niδφ∗i
=
∑
j

njφjλji. (8)

In Hartree–Fock theory without symmetry constraints, variational theory determines Φ
but not the particular orbital basis. It is customary to select a canonical orthonormal
basis that diagonalizes the matrix njλji = εiδij . The energy functionals T ,V ,Eh,Ex
defined above are invariant under unitary transformation of the occupied orbitals of Φ.
External and Coulombic potentials v and vh are determined as local potentials consis-
tent with the chain rule for functional derivatives,

δF

δφ∗i
= ni

δF

δρ
φi.

The implied functional derivative δT/δρ is the linear operator − 1
2∇2. The Euler–

Lagrange equations for the canonical occupied orbitals {φi} of Φ are the exact Kohn–
Sham equations

δEx
niδφ

∗
i

=
δEx
δρ

φi =

(
εi +

1
2
∇2 − v(r) − vh(r)

)
φi(r). (9)

For the exchange energy functional Ex,

v̂xφi =
δEx
niδφ∗i

= −
∑
j

nj(j|u|i)φj (r),

and these equations are identical to the Hartree–Fock equations. If occupation numbers
are varied in a basis of canonical Kohn–Sham eigenfunctions, only the final term in
equation (7) is nonzero, and the equation implies Janak’s theorem [5]

∂E

∂ni
=

∫
φ∗i
δE

δρ
φi d3r =

∫
φ∗i

δE

niδφ∗i
d3r = εi. (10)

In the Kohn–Sham construction [6], a kinetic energy functional is defined by
minimizing the kinetic energy of a reference state under the constraint that ρΦ = ρ
for an exact ground state. This construction defines an effective local potential as a
Lagrange multiplier field w(r), in analogy to equation (3),

Tw[ρ] = min
Φt

[
(Φt|T |Φt) +

∫
w(ρt − ρ) d3r

]
= Ew[w]−

∫
wρ d3r. (11)
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Ew[w] here is the noninteracting ground-state energy of N electrons in an external
potential field w. If w = wρ is chosen so that the minimizing Φw gives ρw = ρHF,
the equations for the occupied orbital functions in the noninteracting model state are

vx(r)φi(r) =

(
εKS
i +

1
2
∇2 − v(r) − vh(r)

)
φi(r), (12)

where vh is the classical Coulomb (Hartree) potential, and the exchange potential is
defined by vx = w− v− vh. In the exact Kohn–Sham equations (9), vx(r) is replaced
by the functional derivative δEx[ρ]/δρ(r). If this is a local function, these equations
are identical.

5. Functional derivatives and local potentials

Each of the ground-state density functionals defined by equations (6) is an explicit
functional of the occupied orbitals of the reference state. If a local potential vF (r) =
δF/δρ exists for a density functional that is also an orbital functional, functional
derivatives of F [{φi}] with respect to the orbital functions used to construct ρ give a
sum rule that determines vF ,∑

i

φ∗i
δF

δφ∗i
=
∑
i

niφ
∗
i (r)

δF

δρ(r)
φi(r) =

δF

δρ(r)
ρ(r) = vF (r)ρ(r). (13)

For the explicit density functional Eh = 1
2

∑
i,j ninj(ij|u|ij), where u = 1/r12, this

formula gives the classical Coulomb potential function,

vh(r)ρ(r) =
∑
i

niφ
∗
i (r)

∑
j

nj(j|u|j)φi(r). (14)

Given Ex = − 1
2

∑
i,j ninj(ij|u|ji) for a ground state, equation (13) implies

vx(r)ρ(r) = −
∑
i

niφ
∗
i (r)

∑
j

nj(j|u|i)φj (r), (15)

equivalent to the local exchange potential of Slater [12]. This result follows whenever
Ex is defined by equation (6). It clearly carries over to the situation of nonzero
correlation energy in RDFT [8]. In standard DFT, it is implied if correlation energy is
defined in a separate postulate as the difference between total energy and reference-state
energy (Φ|H|Φ). For the kinetic energy functional (Φ|T |Φ),

vT (r)ρ(r) =
∑
i

niφ
∗
i (r)

{
−1

2
∇2
}
φi(r). (16)
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6. Criteria for locality

Since the left-hand members of equations (12) and (9) are different, the two
equations in general produce different sets of occupied orbital functions. However, if
a local exchange potential vx(r) = δEx/δρ(r) exists, the proof that the Hartree–Fock
ground state energy is a functional of the (reference-state) density implies that both
equations produce the same ρ and Φρ. The occupied orbital functions determined by the
local-potential equation must be solutions of the general (noncanonical) Hartree–Fock
equations. If equations (12) and (9) are each summed and integrated as indicated by∑

i ni
∫
φ∗i {· · ·} d3r, then equation (15) and the invariance of such trace sums under

unitary transformations of the occupied orbitals imply that the sum of eigenvalues∑
i niεi must be the same for both equations. Individual components of the total

energy must also be identical.
If the ground-state functional derivative δEx/δρ is a local function several exact

results are implied in the Hartree–Fock model theory. If the ground state is not
degenerate, equations (12) and (9) must produce occupied orbital sets that transform
into each other and give the same reference state Φ and ground-state energy, and the
same sum

∑
i niεi of orbital energies for Hartree–Fock, OEP, and the Kohn–Sham

construction. The OEP equations must produce the same local exchange potential vx
as the Kohn–Sham construction, and vx must be the Slater potential, equation (13).
The ground-state Hartree–Fock kinetic energy must be a minimum among states Φ
that produce the same density function ρ. Failure of any of these consequences of
exact Kohn–Sham theory implies that the functional derivative δEx/δρ is not a local
function.

A direct test of locality is provided by considering variations of ground-state
Hartree–Fock ρ and E induced by varying the nuclear charge Z. For a local functional
derivative, Z-derivatives of Eh and ρ would be related by

dEh
dZ

=

∫
vh(Z; r)

∂ρ(Z; r)
∂Z

d3r. (17)

As defined by equation (14), vh is twice the Coulomb energy density. From this
definition,

dEh
dZ

=
1
2

∫ (
vh
∂ρ

∂Z
+
∂vh
∂Z

ρ

)
d3r, (18)

so that the relationship to be tested is

Qh =
1
2

∫ (
vh
∂ρ

∂Z
− ∂vh
∂Z

ρ

)
d3r = 0. (19)

A similar formula is obtained for the exchange potential,

Qx =
1
2

∫ (
vx
∂ρ

∂Z
− ∂vx
∂Z

ρ

)
d3r = 0. (20)



R.K. Nesbet, R. Colle / Local exchange potential 241

If Qx is nonzero, a local functional derivative does not exist. For the kinetic energy
the locality criterion is

QT =

∫
∂vT
∂Z

ρ d3r = 0. (21)

7. Calculations and conclusions

Calculations for most atoms find EOEP > EHF [1,2]. Characteristic differences
between Slater and OEP exchange potentials indicate that an exact local exchange
potential consistent with equation (15) does not exist.

Table 1 compares total energies, exchange energies, and eigenvalue sums obtained
for He, Be, and Ne by Hartree–Fock and OEP calculations. As argued above, these
results should agree if a local exchange potential exists. The differences apparent in
these results indicate that this is not true except for He.

The locality criteria defined by equations (19)–(21) have been computed and
cross-checked using independent variational and numerical Hartree–Fock programs.
Table 2 lists values computed for He, Be, and Ne. As expected, Qh vanishes to within
computational accuracy in all cases, Qx is nonzero for both Be and Ne, and QT is
small only for He. This implies that an exact local exchange potential does not exist
for Be or Ne.

Since these are typical atoms, there is no reason to expect a simpler result for
any atom or molecule with more than two electrons. It can hardly be expected that
exact cancellation would occur between nonlocal exchange and correlation terms so as
to simplify the theory when correlation is included. Thus it is unlikely that the local

Table 1
Total energies and eigenvalue sums (Hartree units).

Atom Method Etotal Ex
∑

ε

He HF [3] −2.8617 −1.0258 −1.8359
OEP [1,2] −2.8617 −1.0258 −1.8359

Be HF −14.5730 −2.6669 −10.0839
OEP −14.5724 −2.6658 −8.8728

Ne HF −128.5471 −12.1083 −74.5081
OEP −128.5455 −12.1050 −70.1293

Table 2
Criteria for local functional derivatives (Hartree units,

signed integers indicate powers of 10).

Atom Qh Qx QT

He 0.131−8 −0.657−9 −0.494−5
Be 0.334−9 −0.126 0.812
Ne 0.963−6 −0.442 6.849
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exchange–correlation potential anticipated in exact Kohn–Sham theory exists except
for two-electron systems.
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